翻訳と辞書
Words near each other
・ Fodinichnia
・ Fodinoidea
・ Fodinoidea formosa
・ Fodinoidea pluto
・ Fodinoidea pulchra
・ Fodinoidea pupieri
・ Fodinoidea rectifascia
・ Fodinoidea staudingeri
・ Fodinoidea vectigera
・ FODMAP
・ Fodoa
・ Fodonyx
・ Fodor
・ Fodor (typeface)
・ Fodor's
Fodor's lemma
・ Fodora
・ Fody
・ Fodé Bangaly Diakité
・ Fodé Bangoura
・ Fodé Camara
・ Fodé Camara (footballer, born 1988)
・ Fodé Mansaré
・ Fodé Soumah
・ Fodé Sylla
・ Fodéba Keïta
・ Foe (disambiguation)
・ Foe (EP)
・ Foe (novel)
・ Foe (unit)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Fodor's lemma : ウィキペディア英語版
Fodor's lemma
In mathematics, particularly in set theory, Fodor's lemma states the following:
If \kappa is a regular, uncountable cardinal, S is a stationary subset of \kappa, and f:S\rightarrow\kappa is regressive (that is, f(\alpha)<\alpha for any \alpha\in S, \alpha\neq 0) then there is some \gamma and some stationary S_0\subseteq S such that f(\alpha)=\gamma for any \alpha\in S_0. In modern parlance, the nonstationary ideal is ''normal''.
==Proof==
We can assume that 0\notin S (by removing 0, if necessary).
If Fodor's lemma is false, for every \alpha<\kappa there is some club set C_\alpha such that C_\alpha\cap f^(\alpha)=\emptyset. Let C=\Delta_ C_\alpha. The club sets are closed under diagonal intersection, so C is also club and therefore there is some \alpha\in S\cap C. Then \alpha\in C_\beta for each \beta<\alpha, and so there can be no \beta<\alpha such that \alpha\in f^(\beta), so f(\alpha)\geq\alpha, a contradiction.
The lemma was first proved by the Hungarian set theorist, Géza Fodor in 1956. It is sometimes also called "The Pressing Down Lemma".
Fodor's lemma also holds for Thomas Jech's notion of stationary sets as well as for the general notion of stationary set.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Fodor's lemma」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.